Компания Joy Global оптимизирует наземные и подземные горнодобывающие операции за счет решений JoySmart.

Вот два конкретных примера применения наших решений на практике:

Подземные горнодобывающие операции: механизированные очистные комплексы

Интеллектуальные очистные комплексы компании Joy со средствами передачи данных содержат сложные сети, соединенные с высокочувствительными гироскопами и тысячами датчиков, непрерывно контролирующими рабочие показатели и исправность системы.

Во время добычи механизированный очистной комплекс продвигается вперед, и за ним происходит обрушение кровли. Установленные в секциях крепи датчики передают данные на поверхность. Сложные алгоритмы преобразуют точки данных в визуальную информацию, способную предсказывать существенные изменения рабочих условий на горнодобывающих предприятиях.

В недавно проведенном исследовании секций крепей с применением алгоритмов Joy Global было выявлено образование полостей в кровле. При помощи усовершенствованных аналитических средств нам удалось предсказать проблемы со стабильностью кровли, которые было невозможно определить невооруженным глазом, а также установить основополагающую причину произошедших изменений.

Это позволило принять срочные меры, оказавшие влияние на общие показатели производительности горнодобывающего предприятия.

Наземные горнодобывающие операции: электрические канатные экскаваторы

Решения JoySmart помогли клиенту из горнодобывающей отрасли сократить повреждения его парка электрических канатных экскаваторов, вызванные ошибками оператора

Операторы экскаваторов не знали о разрушительном влиянии на их машины ударных воздействий при повороте. При соударении ковша с пластом при повороте накапливаются повреждения в рукояти и, в конечном счете, происходит ее растрескивание, требующее продолжительного простоя и дорогостоящего ремонта.

Благодаря решениям JoySmart мы смогли добиться понимания заказчиком того, как принятые им методики работы и условия среды приводили к повышению вероятности повреждений в результате ударов во время поворота. Мы проиллюстрировали проблему данными о конкретных машинах, предъявив количественные данные о вкладе отдельных столкновений в общие повреждения, наблюдавшиеся на машине.

Эта информация была принята за основу плана обучения операторов, выбора целей по улучшению рабочих показателей и мониторинга текущей работы.

Обобщив и осмыслив полученную информацию, мы смогли сократить годовой показатель количества ударов при повороте на 40%, уменьшить износ машин и повысить их коэффициент готовности.